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Sibyl: Understanding and Addressing the Usability Challenges of

Machine Learning In High-Stakes Decision Making

Alexandra Zytek, Dongyu Liu, Rhema Vaithianathan, and Kalyan Veeramachaneni

Abstract—Machine learning (ML) is being applied to a diverse and ever-growing set of domains. In many cases, domain experts
— who often have no expertise in ML or data science — are asked to use ML predictions to make high-stakes decisions. Multiple
ML usability challenges can appear as result, such as lack of user trust in the model, inability to reconcile human-ML disagreement,
and ethical concerns about oversimplification of complex problems to a single algorithm output. In this paper, we investigate the ML
usability challenges that present in the domain of child welfare screening through a series of collaborations with child welfare screeners.
Following the iterative design process between the ML scientists, visualization researchers, and domain experts (child screeners),
we first identified four key ML challenges and honed in on one promising explainable ML technique to address them (local factor
contributions). Then we implemented and evaluated our visual analytics tool, SIBYL, to increase the interpretability and interactivity of
local factor contributions. The effectiveness of our tool is demonstrated by two formal user studies with 12 non-expert participants and
13 expert participants respectively. Valuable feedback was collected, from which we composed a list of design implications as a useful
guideline for researchers who aim to develop an interpretable and interactive visualization tool for ML prediction models deployed for

child welfare screeners and other similar domain experts.

Index Terms—Machine learning, XAl, Usability, child welfare, visualization

1 INTRODUCTION

Thanks to innovations in machine learning (ML), computers can now
help with many tasks previously performed by humans alone, often
improving both speed and precision. However, in many domains, hu-
man decision-makers provide essential insights that cannot be replaced
by existing algorithms. In such cases, decision-making outcomes are
improved when ML output is used to augment human decision-making,
rather than replace it.

ML models often output only a single number or classification, such
as the risk score seen in the upper right corner of Figure 2. This can
make it difficult for human decision-makers to incorporate the model
into their decision making. As a result, many ML algorithms lack
usability, or the attribute of being able to be efficiently used by humans
to make better decisions.

The machine learning, data science, and data visualization commu-
nities have offered a multitude of algorithms and tools to augment ML
predictions and address these usability challenges — we refer to these
as ML augmentation tools. These tools, when chosen carefully for the
domain, have the ability to greatly improve the usability of ML models
for decision making. Examples of such tools include data visualizations,
global and local explanations [2], cost-benefit analysis [9], performance
metrics, and information about historic usage and results of the ML
model. However, research aimed at augmenting ML predictions often
focuses on an audience of ML/data experts [27] [22] [8] or domain ex-
perts in more technical or data-driven fields such as medicine [15] [12].
For example, Zhang et. al. [27] developed a framework for helping data
scientists and ML experts interpret and debug ML models, and Lund-
berg et. al. [15] developed an interface for helping anaesthesiologists
prevent hypoxaemia during surgery through detailed data visualization.
In contrast, many fields are more qualitative in nature, with decisions
following discussion more than data crunching. In this paper, we focus
on these more qualitative fields, and the usability challenges they face.

To concretely assess usability challenges, we investigated the need
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for additional auxiliary information alongside ML predictions through
a comprehensive literature review. We first selected a number of papers
that had ML and explainability as topics. We selected and reviewed
55 papers covering ML applications and explainability. We identified
challenges in human-ML interactions described in these papers. Three
of us then began codifying a set of factors that decrease usability in ML
models. Table 1 summarizes a set of usability challenges we codified
that are relevant when a model is actively used for decision-making.

Some challenges stem from not understanding where a model’s
predictions come from, making it difficult for human decision-makers
to trust the model (TR), and to handle any disagreements between
their opinions and the model’s output (DIS). Others are caused by a
lack of information about the real effects of a decision. A lone model
prediction often does not explicitly indicate the expected results of
a decision (CON), suggest accountability (ACC), or provide ethical
assurances (ETH). Finally, challenges may arise when the output of
the model is not a direct suggestion of a decision, but rather auxiliary
information. In this case, the output may be confusing (CT) or entirely
irrelevant (UT).

Determining which usability challenges exist, the best tools to ad-
dress them, and the necessary design choices for these tools depends
highly on specific aspects of the domain and the decision-makers in-
volved. Through our literature review and the case study discussed
in this paper, we identified a subset of context-dependent factors that
should be considered when working to make an ML model more usable
in a particular domain. Table 2 lists some examples of these factors.

To investigate the problem of finding and mitigating usability chal-
lenges in more qualitative fields, we selected the domain of child
welfare screening. In terms of the relevant context factors, child wel-
fare screeners are domain experts without ML/data science expertise,
making decisions using an ML model as an auxiliary tool, with about a
few minutes per decision, in a high-risk field.

Addressing usability challenges is a non-trivial task that requires
collaboration with end-users. In this paper, we engaged in three forms
of collaboration: observations to understand their existing workflow
and its possible usability challenges, interviews to gain additional
insights into the desires of end-users, and user studies with possible
ML augmentation techniques to get concrete feedback on design.

The main research questions, and our key findings with regards
to these questions, are as follows.

RQ1 What ML usability challenges exist in the domain of child welfare
screening? Through interviews and field observations, our work
identifies four main challenges, described in Section 4.
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Table 1. List of challenges that could negatively impact the usability of an ML model.

Usability Challenge Code

Mitigating Tools

Lack of TRust TR

Difficulty Reconciling human-ML Disagreements  DIS
Unclear Consequences of actions CON
Lack of ACcountability or protections from accountability ~ACC
Ethical Concerns (ex. possible bias, concerns about ETH
oversimplification)
Confusing or unclear prediction Target (ie. the measure ~CT
predicted by the model has an unclear meaning or
significance)
Unbhelpful prediction Target (ie. the measure predicted by UT

the model is not relevant to the required decision)

Global explanations, local explanations, performance met-
rics, historical predictions and results

Local explanations
Cost-benefit analysis, historical predictions and results
Local explanations, performance metrics

Global explanations, local explanations, ML fairness met-
rics, historical predictions and results

Cost-benefit analysis, further analysis of prediction target
impact

Retrain model with new prediction target

RQ2 What interfaces can be helpful in mitigating these ML usability
challenges? We designed and implemented five augmentation
interfaces, making up our SIBYL tool, described in Section 5.
Based on our interviews and a formal user study, described in
Section 6, we suggest that local factor contributions are most
useful for this domain.

RQ3 What design choices must be made when building these tools

to optimize them for use by child welfare screeners and other

experts in similar domains? Based on our interviews and for-
mal user study, we identified a list of design considerations that
should be made when choosing model features and developing

ML augmentation visualizations, described in Sections 6 and 7.

2 STUDY CONTEXT: CHILD WELFARE SCREENING

In this section, we introduce the domain of child welfare screening

Child Abuse in the U.S. Child abuse is an active issue affecting
the health and well-being of communities. The Centers for Disease
Control and Prevention (CDC) estimates at least 1 in 7 children have
experienced child abuse and/or neglect in the past year [1]. Child abuse
victims can suffer physical and emotional injuries, and may experience
trauma resulting in long-term mental health problems [1]. More than
one-third of American children are investigated as potential victims
of abuse or neglect by age 18 [10]. Still, in 2018, there were 1,770
reported fatalities resulting from child abuse and neglect [1].

Child Welfare Screening. In the U.S., regional Child Protective
Services (CPS) agencies are tasked with handling child abuse and
neglect referrals from concerned members of the community, including
mandated reporters such as teachers, who are required by law to report
any suspicion of abuse or neglect. These referrals are examined by child
welfare specialists (“call screeners”), who decide whether to screen in
or screen out each case. A screened-in case will be investigated further,
while a screened-out case will be recorded but not investigated.

Both false negatives (real abuse cases that are screened out) and
false positives (cases with no abuse that are screened in) can have
heavy consequences. False negatives lead to prolonged child suffering
and, in extreme cases, child fatality. False positives can lead to long-
term emotional distress for parents, children, and other family and
community members, as well as damaged financial, career and social
prospects for parents and other caretakers [18].

In 2018, CPS agencies in the United States received 4.3 million
referrals from concerned parties about potential child abuse [1]. 56%
of these referrals were screened in and investigated, but only 16.8% of
the screened in cases were found to involve abuse or neglect [1].

ML for Child Welfare. One important motivation for computerized
assistance in child welfare call screening is repeated cases of missed
abuse. Fatal child abuse cases in which children were referred several
times but were never screened in are tragic, and although such cases are
rare, they are avoidable [7]. An ML solution can quickly scan for red

flags, such as repeated referrals, that busy human call screeners may
miss in the overload of data.

In recent years, predictive risk modelling (PRM) has been deployed
in child welfare contexts in multiple counties, with the goal of enabling
more efficient and consistent decision-making and improving the over-
all health and safety of county residents [24]. One example of such a
model was deployed in Allegheny Country, PA by Vaithianathan et. al.
in 2016 [24].

Currently, PRM is being introduced to our collaborating county in
Colorado by Vaithianathan et. al. [23], through a LASSO regression
model trained on 461 features, which include information such as the
child and parents’ age, past referrals and their outcome, and past court
involvements. The model predicts the likelihood of removal from home
in the next two years, translated to a 1 through 20 risk score where the
higher the score, the higher the risk [24]. This paper focuses on the
usage of this model.

Study Participants. We collaborated over the course of a year with
a pool of 19 social workers and supervisors working for the child wel-
fare department in a collaborating county in Colorado. All participants
regularly act as screeners in the county’s child welfare screening de-
cision making process. Our collaborations began in December 2019,
with two days of in-person field observations (Section 4.1). Following
this, we observed a simulated case review session via video confer-
encing (Section 4.2), and conducted several interviews also via video
conferencing (Sections 4.3 and 5). Finally, our collaborating screeners
participated in our user study digitally (Section 6).

3 RELATED WORK

In this section, we discuss related work in human-centered and explain-
able ML, as well as existing ML augmentation tools.

Human-Centered ML. Past literature has advocated for a human-
centered perspective to ML [4] — one that considers machines and
algorithms as part of collaborative systems alongside humans. This
perspective considers how humans use, interact with, adapt to, and
evaluate ML applications [4]. A truly human-centered ML approach
acts end-to-end, beginning with human-in-the-loop training systems
and ending with evaluation systems based on the metrics that end users
are most interested in [4]. In this paper, we take a deeper look at one
step of this extensive pipeline: the use of ML algorithm predictions by
humans for real-world decision making.

Explainable ML. A common usability challenge addressed by the
literature is the black box nature of most ML algorithms. Humans
struggle to use ML predictions because they do not understand where
they came from. This usability challenge is addressed through the fields
of interpretable or explainable ML. Doshi-Velez and Kim proposed
that the need for ML interpretability stems from an “incompleteness in
the problem formulation” [2], which prevents the system from being
thoroughly evaluated or trusted. This incompleteness can take several
forms, including a need for scientific understanding, concerns about
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Table 2. Domain context factors that may influence the usability of an ML model. The context factors relevant to child welfare screening are in bold.
By technical expertise, we refer to the ML or data science expertise of the end-user. This is not meant to be a complete list — there are many other

factors that could also be relevant.

Context Factors  Categorizations

Example domain

Fully autonomous, humans not involved in decision making

Machine makes decisions, humans monitor
Degree of Automation

Machine suggests decisions, humans make decisions
Machine provides auxiliary information, humans make decisions

Level 5 self-driving car [17]
Level 4 self-driving car [17]
Content violation flagging
Child welfare screening

Immediate
Seconds
Minutes
Hours

Decision time

Level 5 self-driving car [17]
Aircraft emergency response

Child welfare screening
Non-emergency medical procedures

Little to none
Experience with data science
Machine learning/Data science expert

Technical expertise
of humans

Child welfare screening
Finance
ML model training and debugging

Little to none

Domain expertise . . .
P Basic understanding/Intuition

Autonomous aircraft (to passengers)
Crowdsourcing
Child welfare screening

of humans Domain expert
Low
Associated Risk ~ Medium
High

Camera roll image sorting
Mail sorting
Emergency medical procedures

safety or ethics, or mismatched objectives between the model output
and the human goal [2].

Doshi-Velez and Kim [2] also define three evaluation approaches
for ML interpretability. In application-grounded approaches, domain
experts work with explanations within a real application. This provides
the most realistic quantification of explanation quality, but may require
high time commitments from a potentially small pool of domain experts.
In human-grounded approaches, researchers develop simpler problems
for experimentation using non-expert subjects. Finally, in functionally-
grounded evaluation, a formal definition of interpretability is used as a
proxy to evaluate an explanation without using human subjects. This
paper focuses on an example of such an application-grounded approach.

Wang et. al. [25] developed a human-driven conceptual framework
for building explainable Al systems. They found that decision-makers
seek explanations to justify unexpected occurrences, monitor for im-
portant events, or facilitate learning. They created a taxonomy of Al
techniques based on how they support human reasoning and represent
information. Finally, the authors discuss how explainable Al can mit-
igate cognitive biases. Our work builds on this by finding cognitive
biases that can be caused by explainable Al, as listed in Section 7.

ML Augmentation Tools. Spinner et. al. [21] developed a concep-
tual framework for explainable Al, along with a corresponding imple-
mentation called EXPLAINER. This framework includes single-model
explainers (which are the focus of this paper) as well as multi-model
explainers, which can be used to compare and select between models.
The authors also distinguish between different model audiences, in-
cluding novices, model users, and developers — our work focuses on
model users.

Krause et. al. [11] developed PROSPECTOR, a comprehensive visu-
alization system for data scientists. This system includes interactive
functionality for both global and local feature-focused explanations.

Hohman et. al. [6] developed a visual analytics system called
GAMUT to investigate how machine learning practitioners and data
scientists interact with machine learning. To develop this tool for use
on GAMs, the authors interviewed technical experts to generate a list
of common questions asked about predictions. In total, they identified
six question types, which they address using three views. GAMUT was
tested by having 12 data scientists use the tool while thinking out loud,
followed by an interview.

Lundberg et. al. developed PRESCIENCE, an explanatory ML sys-
tem focused on preventing hypoxaemia during surgeries [15]. This
tool predicts the risk of hypoxaemia in the next five minutes using a
gradient-boosting algorithm trained on time series. It also includes
several visualizations to explain the prediction, including SHAP feature

contribution explanations.

Kwon et. al. [12] developed RETAINVIS, a visualization tool for
explaining recurrent neural networks (RNNs) applied to electronic
medical records (EMRs). The tool was developed with active feedback
from domain experts (medical practioners). RETAINVIS includes five
different visualizations for looking into RNNs.

Our work is similar to these tools in that it relies on collaboration
with end users to develop a tool that provides additional information
alongside an ML prediction. However, our users are not expected
to have any prior ML or data science expertise, nor are they used to
working with data-heavy visualizations. This work is also the first
to our knowledge that investigates through a complete case study the
usability of machine learning for child welfare screeners.

4 UNDERSTANDING CONTEXT AND END-USER NEEDS

To address RQ1 (identifying ML usability challenges), we performed a
series of field observations and interviews. In this section, we discuss
our goals and the findings we made during these steps.

4.1 Understanding Existing Workflows

To better understand the existing child welfare screening workflow, we
travelled to our collaborating county in Colorado to observe screeners’
decision-making on referrals without using the ML model. This process
led to the following findings:

1. Our collaborating county uses the general procedure for child
welfare screening shown in Figure 1. In cases of immediate con-
cern, a referral may be screened in immediately after it is received
by CPS (this decision is made by a child welfare supervisor). In
most cases, however, the decision as to whether to screen-in or
screen-out a referral is made by a team of child welfare experts.
It is this team that receives the ML risk score prediction.

2. Five to ten minutes are spent on each case by this team. Most of
this time is spent going over the details of the case. The screening
decision is made after about one to two minutes of discussion.

3. A large portion of these five-to-ten minutes of screening time
is dedicated to determining the factors that are associated with
higher and lower likelihood of abuse — referred to as risk and
protective factors, respectively — involved in a case, and weigh-
ing these against each other. The factors considered will vary
based on the details of the case, but may include information such
as child’s age (very young children are more vulnerable), criminal
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Investigate immediately or
after given number of days

Investigate ML decision Sereenlin Noreran
immediately aid used
yes 4 v yes 4 t
Initial referral no . no .
CPS Hotline Immediate Screening o Provide
from concerned —» records details concermn? o CTEEEES —» Concern? —» Screen out —> T e

party

Fig. 1. The general child welfare screening process used by the CPS department of our collaborating county. The referral is first received by the CPS
hotline, and then sent to a child welfare supervisor. In a minority of cases, the supervisor will deem the child or children involved to be in serious and
immediate risk of danger, and will screen-in the case for immediate further investigation. In most cases, however, the case will be reviewed by a team
of child welfare screeners the next day. This team will be given the ML risk score prediction (dark blue box). If this team decides to screen-in the
case, it will be investigated further through home visits, interviews, or other means. Otherwise, the case will be recorded but not investigated unless
re-referred. In the case of a screen-out, the screeners may elect to provide the family with additional family services.

record of adults involved, whether there are any trusted adults
active in the child’s life, and actions and statements made by
adults involved (for example, a mother taking actions to separate
an aggressive partner from her children).

4.2

To identify the particular ML usability challenges relevant to child
welfare screening (RQ1), we observed a simulated case review session
where social workers used an ML model. In this session, our 19 expert
collaborators were split into three teams of typical size, which we will
refer to as T1, T2, and T3. They were asked to make decisions about
real referrals that the county had handled in the past. For each case,
they had access to the information that screeners are typically given
during decision-making — including the age of all involved parties and
a written description of the potential abuse as given by the referring
party — as well as a 1 through 20 risk score provided by the ML model.
After receiving this information, the screeners went ahead with their
usual process: discussing the case as a team for five to ten minutes and
then making a screening decision. The teams were then interviewed
and asked to reflect upon how they used each ML score, whether the
scores aligned with their expectations, and how the scores impacted
their decisions. Each team made decisions on seven to nine cases.

During interview sessions, all three teams expressed reservations
about using the ML model for decision-making. Based on their re-
sponses to our interview questions, we identified four key usability
challenges:

Identifying ML Usability Challenges

1. Lack of Trust TR  Screeners expressed a lack of trust when
making decisions using the ML model, evidenced by their ten-
dency to not consider the model prediction at all when it disagreed
with their intuition. For example, when asked if the score caused
them to reconsider their decision, T3 responded

“No, [we were] surprised it is that low.”

Difficulty reconciling human-ML disagreements DIS
Screeners did not have a clear path forward when they disagreed
with the model prediction, sometimes electing to ignore it entirely
(see previous item) and sometimes trying to justify it based on
how they thought the model worked. For example, T2 reported in
one case that the score made them

“think a little deeper about why the score is so high
[and caused us to] take another look at [the history]”

Unclear prediction target CT  Because the model provides
auxiliary information (1-20 risk score based on the likelihood
of removal from home in 2 years) rather than a direct decision
suggestion, there was some confusion about how to use the model
prediction target. For example, when asked how the model af-
fected their decision making process, T3 responded

“[we did not know] enough of what the score means
to know how to accurately use it.”

T3 also said they

“Wish we knew how we got to the score.”

4. Concerns about Ethics ETH  As expected for such a sensitive
domain, users were concerned about the ethics of using the ML
model score. There was concern that the model may prevent
critical thinking. T3 commented

“[The model] could be dangerous for people just
looking at the number; need to take everything into
account. Makes you stop and think and ask yourself
are you critically thinking...”

In addition to determining which usability challenges were rele-
vant to child welfare screening, we also confirmed that some were not
relevant, and therefore did not require consideration when designing
S1BYL. For example, three of the example usability challenges from
Table 1 were not relevant. Lack of accountability ACC was not rel-
evant, as accountability is always held by human decision-makers in
this domain. Similarly, unclear consequences of actions CON was
not relevant, because the domain experts have extensive training and
understanding of the potential consequences of screening decisions,
and do not intend to offload this understanding to an ML algorithm.
Finally, unhelpful prediction target UT was not relevant, as the ML
model has been developed specifically to provide relevant information.

4.3

To begin addressing RQ2 (what tools can be helpful in mitigating
usability challenges), we interviewed the 19 screeners about what
additional information they would be interested in receiving alongside
ML predictions. The format was a semi-structured open-floor session.
We began by asking the screeners whether they thought additional
information would be useful, and what specific information they would
be interested in. We also proposed possible augmentation information
(e.g. the relative importance of different factors, answers to what-if
questions, and comparisons with past cases) and asked if they might be
helpful.
Our findings from this interview included:

Interviewing Screeners

1. Screeners were confident that they would want to know why the
model made the predictions it made.

. Screeners believed that understanding how important each factor
was to the score prediction would be helpful.

. Screeners wanted to know what steps the model takes in making
predictions.

. Screeners were interested in getting “what-if”” style explanations
that give information about what could be changed about a child
to reduce his or her risk. Note that the ML model is not trained on
causal relationships, so explanations would not be able to provide
such information.
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B I DG Age of the child in focus at time of referral 0 o
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Count of other adults on the referral who have ever received a screened
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DG Count of parents on the referral who are female 2 -«
o RH Count of prior referrals for parent that included a referral reason 2 -
in category: emotional

Showing 10 factors

G v SHOWALLFACTORS

Fig. 2. The final version of the "Case-Specific Details” interface after factoring in user study feedback. This interface shows how particular factors
contribute to predictions made by ML models about child welfare. Labeled elements are as follows: (A) The risk score for the case (1-20). (B)
Categories for each factor, such as demographics (DG) or referral history. (C) A short description of each factor. (D) The value of numeric or
categorical factors. (E) The contribution of each factor (the table can be sorted in ascending or descending order of contribution). (F) Ul components
for searching by factor name or filtering by category, enabled when the full factor list is shown. (G) A button for switching between a view that shows
only the top 10 most contributing factors and one that shows all factors. (H) A button for switching between a single-table view and a side-by-side
view, which splits factors that increase and decrease risk. (I) A sidebar for switching between different explanation types, as described Section 5.

5. Some screeners were interested in seeing similar cases they dealt
with in the past. Others thought this would be too much informa-
tion to digest in such a short period of time.

5 GETTING FEEDBACK ON POSSIBLE TOOLS

To address RQ2 (identifying helpful interfaces) and RQ3 (identify-
ing important design choices), and based on the usability challenges
identified (Section 4.2) and responses to our interview (Section 4.3),
we engaged in a user-centered iterative design process [16] to develop
SIBYL, an ML augmentation tool. We began by designing high-fidelity
mock-ups for five augmentation interfaces, each with a separate purpose
and goal. Table 3 summarizes the motivation behind each interface
in terms of its theorized effect on addressing the usability challenges.
The full versions of the original high fidelity mock-ups can be found in
Appendix B.

Early in the design process, we learned that the word “factor” is
more familiar to screeners than “feature” when referring to pieces of
information used when making decisions. For the purposes of consis-
tency, we use the word factor throughout this paper when referring to
data inputs used by the model.

5.1 Case-Specific Details: Factor Contributions

The Case-Specific Details interface (Figure 2) provides a simple lo-
cal explanation of where an individual model prediction comes from
through factor contributions. The table assigns each factor a contribu-
tion (Figure 2E), either positive (red) or negative (blue). The bar length
indicates the magnitude of the contribution.

The phrases positive contribution and negative contribution may
cause confusion. In the ML community, a positive contribution indi-
cates that the model prediction will increase in value. In the screener
community, however, an increased risk score is a negative occurrence.
We decided to avoid using the terms “positive” and “negative” in the
app or instructions. Instead, the factors are labelled as “risk factors”
or “protective factors” to mirror the screeners’ language. We utilize
the bar’s direction along with the two arrows (1 and ) to suggest risk
increasing (red bar pointing right) or decreasing (blue bar pointing left).

A local factor contribution explanation may reveal that the young
age of a particular child (infant) has caused a significant increase in
the risk score (Figure 2-C1), while the low number of past referrals (2)
compared to the average referred child resulted in a decrease compared
to the average risk (Figure 2-C2).

Values New Prediction: 19

@ Factors

Child in focus is older than 1 year old v True v | Reset

Factor with numerical value v 1

+ADD FACTOR

S

Category Factor Changed Value New Score Difference :
® CN Factor #1 Description True -> False 19 4 N
CN Factor #2 Description False -> True 18 3 N

CN Factor #3 Description False -> True 12 R

Fig. 3. Sandbox visualizations. (A) Users can change up to four factor
values at a time, and the new score will be displayed on the top right
corner. (B) The table lists the resulting prediction if each Boolean value
is individually reversed.

The local factor contributions were found using the Shapely Additive
Explanations (SHAP) algorithm [14]. We chose to use SHAP because
it is theoretically grounded in game theory and generates consistent and
intuitive explanations for an ML model.

We decided on a local contribution interface as we theorized it may
help with all identified usability challenges: the screeners’ lack of trust
TR by demonstrating that the model relies in part on similar factors
as the human screeners in making decisions, difficulty reconciling dis-
agreements DIS by highlighting differences in the human and model’s
logic, unclear prediction target CT by providing a concrete explanation
of the scores’ meaning, and concerns about ethics ETH by making
critical thinking about relevant factors easier.

Feedback. Initial interview feedback suggested that screeners were
most interested in the Case-Specific Details interface, so it was kept
as the default option. Additionally, screeners said that in their usual
workflow, they would list “Risk™ and “Protective” factors side by side.
To mirror this, the updated version of this interface has a split-view
toggle (Figure 2H) that shows negatively and positively contributing
factors in two side-by-side tables).

5.2 Sandbox: Investigating “What Ifs”

The Sandbox interface allows users to experiment with and see how
the model prediction would change if factors differed. It has two parts:
(1) The Experiment with Changes box (Figure 3A) allows users to
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Table 3. The proposed SIBYL interfaces (left column), the challenges they were theorized to address (middle column, using the codes from Table
1), and the reasons we expected these interfaces to address the given challenges (right column). TR: Lack of trust in the model. DIS: Difficulty

reconciling disagreements. CT: Confusing prediction target. ETH: Ethical concerns.

Interface Challenges How does it address the challenge?
Addressed
TR
Case-Specific Details TR Reveals relevancy of considered factors
DIS Highlights factors that may have been missed or misused
CT Translates score to a concrete factor list
EAINEL Allows for critical thinking about factors and score
Sandbox DIS Allows users to test theorized justifications
EAINEL Allows for thinking through what-if scenarios
Similar Cases TR Provides information on past performance
ETH Provides a deeper look into the nuance of cases
Global Factor Importance TR Reveals how the model generally makes predictions
CT Translates the score to a concrete factor list
Factor Distributions TR Shows how well the model performed on past cases
CT Shows the relationship between the risk score and removals from home

change up to four factor values at a time, to investigate specific “what-
if” questions. (2) The Model predictions if each value was changed
box (Figure 3B) shows the resulting prediction if each Boolean factor
value was individually reversed (ie. true to false or false to true).
Following the consistent design principle, we adopted a similar tabular
design and use the red/blue up/down arrows to highlight changes in
risk scores.

This interface was added based on feedback from the interviews
described in Section 4.3. We theorized it may help with difficulty recon-
ciling disagreements DIS by allowing screeners to test their theorized
justifications, and with concerns about ethics ETH by making more
detailed consideration about the model’s output easier.

Feedback. Screeners expressed concern that the Sandbox interface
may be misconstrued as suggesting specific actions or reflecting real-
world causal structures. However, screeners also said that they saw
value in this interface as a supervision tool, used to review model
predictions and human decisions rather than being actively used during
the decision-making process.

5.3 Similar Cases: Investigating Past Cases

The Similar Cases interface shows the complete history of child welfare
involvement with past cases that had similar factor values. The simi-
lar cases are found using a Nearest Neighbors algorithm. For design
purposes, the algorithm used weights all factors equally. This interface
includes a timeline for the current case and each similar case, and high-
lights events such as referrals to child welfare services, investigations,
and removals. To facilitate comparative analysis, cases are lined up
row by row and share the same timeline.

The interface was added as we theorized it may help with screeners’
lack of trust TR by demonstrating past performance, and concerns
about ethics ETH by providing a deeper look into an individual case.

Feedback. Screeners were concerned that this interface may cause
poor decision-making. They explained that basing decisions about a
current case on past cases that seem similar is discouraged, as this can
lead to biases or self-fulfilling prophecies. Therefore, it was decided
that this interface would not be included in a decision-making tool.
However, county officials pointed out that it could be used retroactively
(outside of decision-making) to investigate unusual predictions made by
the model for the purposes of model evaluation. Due to these concerns,
we decided not to include this interface in our formal user study.

5.4 Global Factor Importances: Understanding the Model

The About Model interfaces offer information about the model’s general
logic, outside of the context of a individual prediction.

The first About Model interface is the Global Factor Importance
explanation. This interface shows a global explanation in the form
of the general, relative importance of each factor. It also provides a
brief description of the model architecture and logic, as well as its
performance metrics. A visualization for this interface can be found in
the Appendix, Figure 9

The global factor importance rankings were found using the Permu-
tation Importance algorithm [3]. This algorithm computes the change in
model performance if each factor is permuted individually. It therefore
describes how closely each factor is linked to model performance.

This interface was added as we theorized it may help screeners build
trust in the model TR by seeing how it generally makes predictions,
and because it may clarify the meaning of the prediction target CT.

Feedback. Screeners said that the Factor Importance interface
seemed intuitive, but may provide too much information to be practical
during active decision-making. Instead, they said it may be useful for
training and education.

5.5 Factor Distributions: Understanding Past Predictions

The second About Model interface is the Factor Distributions ex-
planation, which gives a quick retrospective view of how the model
performed in the past. This interface shows the distribution of factor
values among past cases that were given a particular score (Figure 4A),
as well as the percentage of children with that score who were removed
from the home (Figure 4B).

Depending on the factor type (Figure 4C), the Factor Distributions
explanation uses one of three visualizations to show the value distribu-
tion of children who received the selected prediction score. For binary
factors, a progress-bar like design is used. For numeric factors, a box-
and-whiskers plot shows the global minimum and maximum values for
a feature, and the minimum, first quartile, third quartile and maximum
for the selected risk score. For categorical factors, segmented bars are
used to encode a categorical value distribution; hovering over a segment
provides more information about the categories and their corresponding
percentages.

This interface was added as we theorized it may help screeners build
trust in the model TR by seeing how it generally performs, and it may
clarify the value of the prediction target CT by showing how it relates
to a more tangible output of removals from the home.

Feedback. Like the Factor Importance interface, screeners ex-
pressed concern that the Factor Distributions interface shows too much
information for use during active decision-making. However, they said
it may be useful for training and finding gaps in provided services.
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Fig. 4. Factor Distribution visualizations. Users specify a risk score of
interest (A) and observe the percentage of children with that score who
were removed from the home (B). Three kinds of visualizations (C) are
proposed to show the value distribution of children with the selected
prediction score.

6 USER STUDIES

To evaluate SIBYL, we ran two formal user studies.

Our first study involved 12 data and/or social scientists. We chose
to run a study with non-experts first in order to fix immediate usability
problems and iterate on the UI/UX elements of the tool. Although these
participants had no prior experience in child welfare screening, it was
possible for them to understand the process intuitively enough to use
the tool in roughly the same way as experts would.

In our second study, we engaged 13 collaborating child welfare

screeners (experts), 2 of whom completed the task while video confer-
encing and screen-sharing with us. We discuss the results of both user
studies in this section.
Data used: For privacy reasons, we used only synthetically generated
and deidentified data in this section. Data for different factors was
generated using the CTGAN synthetic data generation algorithm [26],
in which a generative model is learned from the real data and samples
that resemble the real data are drawn from the model.

Case descriptions were real paragraph-form narratives provided by
concerned parties during past referrals. Names were changed by a
representative of the county for de-identification. For example:

“Caller (teacher) says Abby (age 5) came into school with
bruise on arm. Caller says Abby often comes in bruised.
Abby told teacher she fell off bike. Teacher asked Abby’s
mother about this and mother started acting aggressive...”

6.1 Study Procedure

Participants were first shown a short video explaining how to use SIBYL.
Next, they were shown 7 case descriptions, accompanied by model
predictions and SIBYL interfaces with simulated data.

Participants were then asked to make a screen-in/screen-out decision,
and to answer some reflection questions. These questions included 1)
five-point Likert-scale style questions about how much participants
trusted the model and how confident they felt in their decisions, 2)
multiple choice questions about which SIBYL interfaces were helpful,
and 3) free response questions about trust in the model and general
feedback.

In total, experts completed 73 individual case analyses, and non-
experts completed 75. The procedure for this user study is summarized
in Figure 5.

6.2 Study Results
6.2.1 Helpful Interfaces

To address RQ2, we analyzed the self-reported helpfulness of each
augmentation interface.

The Case-Specific Details interface was by a large margin considered
the most helpful interface, by both experts and non-experts. It was
labelled as being helpful by experts in 91.8% of case analyses, and
by non-experts in 90.7% of case analyses. This was significantly
higher than Sandbox (experts: 16.4%, non-experts: 22.6%) and Factor
Distributions (experts: 20.5%, non-experts: 8.0%). Factor Importance
was never listed as helpful by either group.
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6.2.2 Reliance on Sibyl

Unsurprisingly, non-experts were more likely to report listening to
the model without considering the added information in SIBYL. One
non-expert participant commented,
“No idea what is going on in this case description — so
completely defer to the model here.”
Another non-expert participant commented
“I found the score useful - and used it as a justification for
screening out without exploring in detail all the factors.”
Additionally, non-experts reported that they used the model “a lot” or
“a great deal” on 46.4% of cases, while experts chose these options in
15.6% of cases.

6.2.3

The SIBYL interfaces were reported to both increase and decrease ex-
pert users’ trust in the model for different reasons. To analyse why
this might occur, we thematically analyzed the responses to the open
question “What made you trust the model more or less?” We gathered
56 responses to this question and divided the answers into two cate-
gories, based on the corresponding answer to the 5-point Likert scale
question “How much did you trust the model’s prediction for this case?”
43 free-responses corresponded to trusting the model “a great deal,” “a
lot,” or “a moderate amount,” while 13 corresponded to trusting the
model “a little” or “not at all.” For all but three of these answers, the
response corresponded with the degree of trust listed (ie., participants
who reported trusting the model provided reasons why they trusted the
model more). We do not include the three exceptions in our analysis.

To conduct the thematic analysis, we sorted according to which (if
any) specific SIBYL interfaces were referenced, and further identified
what specific elements of the interfaces were referenced. For answers
that did not reference a specific interface, we identified themes in the
responses, such as agreement with the model, references to general
information provided by the model, or inaccuracies in the model. With
these two coding mechanisms, we sorted the responses into 7 themes
that corresponded with increasing trust, and 5 that corresponded with
decreasing trust.

Table 4 lists these themes. We see that agreeing with the model’s
score increases trust of the model the most. Beyond this, the Case-
Specific Details page was frequently cited as increasing model trust,
either due to specific factors listed or more general elements of the
page, such as the number of factors. Trust was reduced when there was
confusion or inconsistencies in the presented information, or when the
model did not consider important factors that participants knew about.

6.2.4

To address RQ3, we categorize and summarize the comments made by
users regarding SIBYL design choices, as well as the steps we took to
address them.

Impact on Trust

Information Presentation

1. Too many factors shown The model was originally trained
on over 400 factors, all of which were presented in the SIBYL
interface, but many of these factors have zero or near-zero weight.
For example, one participant commented:

“Too many factors listed. I only want to see the
material risk and protective factors.”

Our updated version of SIBYL only shows 10 factors by default,
with an option to show more.

2. Confusion caused by correlated factors The model uses
some engineered factors, resulting in factors that have determin-
istic relationships. For example, there is a numeric factor called
AGE OF CHILD, and then a set of binary factors referring to each
age group: i.e. CHILD IS LESS THAN 1 YEAR OLD, CHILD
IS BETWEEN THE AGES OF 1 AND 3, etc. These factors may
cause confusion when shown directly to users. In addition to in-
creasing the cognitive load on users without providing additional
useful information, explanations using these factors may reveal
seemingly contradictory or unusual relationships. For example,
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an age category may contribute greatly, while the numeric age
factor does not.

Additionally, having these correlated factors causes confusion on
the sandbox page, as it is possible to change one factor without
changing all of the other deterministically-correlated factors in its
set. One participant commented,

“I’'m not sure, in the sandbox, if I change one feature,
other features will be changed automatically.”

To solve these problems, we combined the correlated factors in
the SIBYL interface, forming categorical factors out of binary
one-hot encoded factors, and summing the additive contributions.

3. Confusion caused by Boolean terminology = One source of
confusion was the method of displaying Boolean factors. In our
original design, we displayed the description of the factor, with
a value of True or False. This is the most accurate way of
representing the model’s logic, but it is not the most intuitive way
for our end-users. One participant said,

“The ‘true’ and ‘false’ is hard to interpret... Would
rather have a positive statement (e.g., no perpetrator
named)”

Therefore, our final version of SIBYL instead states only true
statements about the child — including by negating descriptions
of false factors. For example, the factor CHILD HAS SIBLINGS
with a value of False will be displayed as CHILD DOES NOT
HAVE SIBLINGS.

7 DISCUSSION AND LIMITATIONS

In this section, we summarize general lessons learned regarding how
augmentation tools can improve the usability of ML models in the child
welfare domain. We speculate that these lessons may generalize to
other domains with similar context factors — i.e. those where users
with high domain expertise and low technical expertise make high-
impact/high-risk decisions with the help of ML models.

71

In Section 6.2.1, we noted that our user study participants did not fre-
quently list our About Model or Sandbox interfaces as helpful, despite
our hypothesis that these interfaces could address some usability chal-
lenges as noted in Table 3. While further user studies will be required
to identify exactly why more interfaces were not used, a few potential
reasons come to mind. First, screeners are used to making decisions
fairly quickly, and may not have enough time to parse and consider case
details while investigating more than one interface. Second, the About
Model interfaces may not be very relevant to screeners in the midst of
a specific case, and may be more helpful if presented to screeners prior
to screening. Third, the experimentation functionality of the Sandbox
page is only useful if screeners have a specific what-if question in
mind, while the “flipped feature” aspect may be somewhat redundant
— it shows similar information to the Case-Specific Details page (the
relative importance of each factor), but it a way that appears to be less
intuitive to users.

Helpful Augmentation Tools
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7.2 Accuracy versus Fidelity

Robnik-Sikonja and Bohanec [19] define the accuracy of an explanation
as how well it generalizes to other unseen examples (i.e., how accurately
these rules predict what happens in the real world), and fidelity as how
well an explanation describes the model itself.

Our users were mostly interested in getting accurate explanations
that provided information about the case at hand. As evidenced by all
three findings about the interface design (Section 6.2.4), users wanted
to receive information about the model in a language and format that
mirrored their own, not the format used by the model itself. This
is also evidenced by design requests like using the terms risk and
protective factors, rather than the more ML-centric terms negative and
positive features.

7.3 The Importance of Interpretable Factors

Simple models, such as regression, are often cited as being inherently
interpretable [20]. However, this case study suggested that even simple
models may cause confusion in users, and lead to challenges when
attempting to explain model predictions for decision making.

Instead, our work found that, for the purposes of making models
usable for end-users, the interpretability of the model factors may be
most important. In our study, the screeners were often confused when
explanations used factors that did not have clear implications on risk.
For example, in our user study, one participant said

“... 2 parents have missing date-of-birth is shown as a

significant blue bar which I can’t imagine is protective.”
Additionally, as discussed in Section 6.2.4, one-hot-encoded factors
were not interpretable, and many of the reasons screeners trusted the
model more or less (Table 4) related to the specific factors.

7.4 Non-Applicable Usability Challenges

One interesting finding of our work was the usability challenges we did
not see evidence of in this case.

For example, one possible use of explanations is to give humans
the ability to actively correct errors in a model’s logic. We did not see
evidence of this behavior from our users, however. There are several
possible reasons for this. First, our users are making decisions in a very
limited time, and do not have additional time to review the model’s
quality. Second, our users are thoroughly analyzing every case on their
own and were only using the model as an extra flag. Finally, the users
already have some discomfort about the model, likely due to the high
associated risk. As a result, our users tended to discount the model
altogether if they did not believe it was correct about a particular case.

Additionally, users expressed almost no interest in learning about
the model itself through explanations. A common explanation need
addressed by the literature [13] is to understand how the model works
(model transparency), possibly for debugging. In our case study, how-
ever, only once (see Section 4.3, Item 3) did any screener express
interest in understanding the details of how the model worked under the
hood — and even then, they were mostly looking for a broad overview.

7.5 Cognitive Biases

Wang et. al. [25] introduced a list of the cognitive biases explanations
can help address. Our experience with child welfare screeners addition-

Pilot Study 1: Show users details Show users Monitor Ask for Ask reflection Calculate
Usability and |ead about case and —» Sibyl —» Sibo | 0 —»  screening —» questions about —»  and parse
Usefulness model prediction interfaces EUSE decision usefulness and trust metrics

J
v v v v
Difficult or Frequency of Subjective Trust in model
confusing use of each helpfulness of and influences

elements of Ul

tool interaction each interface to trust

Fig. 5. The procedure for our formal user study. Our participants were first shown the description of potential abuse from a child welfare referral, as
well as the corresponding ML prediction risk score. Next, they were given the opportunity to interact with the SIBYL interfaces. Once they were ready,
they were asked to make a screen-in or screen-out decision, and then asked a series of reflection questions.
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Table 4. Summary of answers to the question “what made you trust the model more/less”. The top section lists reasons for having “a great deal”, “a
lot” or “a moderate amount” of trust in the model. The bottom section lists reasons for having “a little” or “not at all” trust in the model. The first
column lists the general themes we found in the answers. The second column lists the number of answers that fell within each theme. The final

column lists selected answers for each theme.

Factors that increased trust

#of

Categor
£ answers

Sample answers

General comments about being shown protective and risk factors 8
(Details page)

Specific factors listed as risk or protective (Details page) 8
The number of factors listed (Details page) 5
The score agreed with screener intuition 10
The explanation agreed with screener intuition 3
General comments about sandbox page 1

General comments about the explanation providing more infor- 6
mation or understanding

“The details and the risk and protective factors and the contribution they
have” “Info in the details and risk factors”

“The past number of child welfare involvements (listed in the features
listed)”, “The risk factors involved, especially prior placements, benefits,
and current CPS involvement”

“Very few risk factors”, “The lack of protective factors”

“...not residing with the alleged perpetrators which I would assume
would reduce the risk score”, “Model prediction makes sense”

“Risk factors made sense for the model prediction number”

“Details under sandbox of why the risk level was so high”

“Allowed for more understanding”, “History clarification”

Factors that decreased trust

# of
Category Sample answers
answers
A specific, key factor was not considered by the model 3 “This is a case for law enforcement, not CPS”, “...it may have been
handled during the open case”
The importance weighting of factors was off (Details page) 2 “Young, vulnerable children being left alone is still cause for concern,
despite past involvement”
The score disagreed with screener intuition 3 “Seems high, no health history, no real proof of any drug use, no proof
child is at any risk of abuse”
There was some confusion about information presented 2 “There were discrepancies between the info in the referral and the info
provided by the tool”
The screener wanted more information 2 “I would want to see other referrals for the family”

ally suggested some of these cognitive biases could be encouraged by
the explanations and other forms of further information. For example:

1. Representativeness Bias [25]: Case-based explanations that of-
fer similar examples to the case at hand (such as our Similar
Cases page) risk encouraging users to make decisions based on
similarities to another case.

2. Causation vs Correlation: Counterfactual-based explanations,
which consider how the model prediction would change under
different circumstances, made participants more likely to inter-
pret the explanations as containing information about the causal
structure of the world.

3. Availability Bias [25]: A factor-contribution explanation that is
sorted in ascending order (and therefore lists negative contribu-
tions first) may result in different decisions than one that is sorted
in descending order (and therefore lists positive contributions
first) due to availability bias, which causes humans to put too
much importance on recent or memorable events or information.

Further work and user studies may better reveal the extent to which
these biases are caused or exacerbated by ML augmentation tools.

7.6 Limitations

Our work has some limitations that may be addressed in future work.
Our analysis focused on the qualitative comments and self-reported
confidence measures provided by participants, which we used to mea-
sure the usability and perceived usefulness of the different explanation
interfaces. Because the data used in our formal user study was syn-
thetic, and therefore not associated with real-world outcomes, we did
not measure the efficacy of the screening decisions made by these users.
Arguably, it would be possible to quantitatively measure certain effects
of SIBYL — such as changes in the quality of decisions made, or differ-
ences in results depending on how the platform was deployed — or even

to use SIBYL to identify biases in human decision-making. However,
this was beyond the scope of this paper, which sought to explicitly
augment human decision-making, rather than potentially cross the line
into partially automating it.

The literature on ML usability would benefit from a complete,
methodological investigation into the ML usability challenges present
across domains, to extend our sample subset introduced in Section 1.

8 CONCLUSION AND FUTURE WORK

In this work, we identified the ML usability challenges associated
with the domain of child welfare screening. We found one promising
tool (factor contributions, on the Case-Specific Details interface) for
mitigating many of these challenges, and pinpointed important design
decisions that must be made to maximize the usefulness of this tool.
Future work should empirically investigate the effect this tool has on
decision-making, quantitatively measure how well it mitigates existing
usability challenges, and explore innovative visualization designs to
better solve the remaining challenges.
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A APPENDIX: MITIGATING TOOL DEFINITIONS

Here, we define the types of mitigating tools discussed in this paper
and Table 1.

Global Explanation: An explanation of a model’s general logic,
achieved through methods such as quantifying the overall importance
of features or visualizing the model boundary [2].

Local Explanation: An explanation as to why a model made an
individual prediction, achieved through methods such as quantifying
how much each feature contributed to this particular prediction [2].

Cost-Benefit Analysis: A measurement of the expected total reward
from taking an action, defined by the expected benefits minus the
costs [9]. In the case of machine learning, this would involve providing
information about the expected results of a prediction alongside the
prediction itself.

ML Fairness Metrics: Mathematical approaches to measuring the
level of bias present in models [5]

B APPENDIX: DESIGN MOCKUP REVIEWS

Figures 6 - 10 show the original design mockups that were presented
to child welfare screeners, and describe the feedback and changes that
were made as a result of this interview.

C APPENDIX: USER STUDY QUESTIONS ASKED

Table 5 contains the complete list of questions we asked during our
user study.
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